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SHAPE OPTIMIZATION FOR HEAT
EXCHANGERS WITH A THIN LAYER

F. Caubet, C. Conca, M. Dambrine and R. Zelada
Abstract. This paper focuses on a shape optimization method applied to fluid-to-fluid
heat exchangers. We consider the framework of two fluids separated by a solid thin layer
(the wall of the pipes) and we perform an asymptotic expansion in order to obtain an
approximated model without thin layer. Due to this approximation, the multi-physics
problem is reduced to a weak-coupled problem, between the steady-state Navier-Stokes
equations for the two fluids dynamics and the convection-diffusion equation for the heat.
The aim is then to optimize the shape of the heat exchanger in order to maximize the heat
exchange and minimize the pressure drop. Thus, we characterize the shape derivative for
the objective functional and perform numerical simulations in two dimensions.
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§1. Introduction

A heat exchanger is a device that allows the heat exchange between two or more fluids without
mixing of fluids. There is a growing interest in heat exchangers due to energy consumption
and aiming for efficiency. Engineers propose new designs based on physics, intuition and ex-
perience for different applications of the heat exchangers, trying to improve the performance.

The shape and topology optimization community has been interested in this application
in the last few years, since the work [10] based on the SIMP method [3]. One of the main
difficulties in solving a shape and topology optimization problem concerning heat exchangers
is how to deal with the non-mixing constraint. Recently, [6] proposed a level-set approach
with which is more natural to deal with the distance constraint. We highlight that in the
literature, the separation between the fluids is assumed to be large enough.

Our work takes into account that a thin layer separates the two fluids (i.e. the pipe). This
would require a very fine mesh of this solid region to numerically solve the problem, which is
too expensive. Hence, in order to avoid that difficulty, we perform an asymptotic analysis to
obtain effective transmission conditions between the two fluids which takes into account the
diffusion in the solid, without meshing it. Another advantage is that we do not have to deal
with the distance constraint as in the works mentioned above. However the obtained system,
which can contain non standard transmission conditions, can be harder to solve.

To find the optimal design, we rely on the Hadamard’s boundary variation method (see [2,
8] for more details) as in [6]. In this conference paper, we present the method in a first
simplified model: more elaborated ones are the topic of a forthcoming work.

Paper organization. The paper is organized as follows. Section 2 is devoted to introduce
the considered problem. In section 3 are obtained the effective boundary conditions, using an
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asymptotic expansion, and we present the approximate optimization problem on which we
focus. In section 4 are established the shape derivatives. In section 5 are presented numerical
simulations. Finally, in section 6, some conclusions and perspectives of future work are given.

§2. Formulation of the optimal heat exchanger design problem

The domains. In this work, we considerΩcold := (−1, 1)× (−1, 0) andΩhot := (−1, 1)× (0, 1)
be two disjoint open bounded domains of R2, such that the whole domainΩ is formed by their
union. In what follows, Ωhot represents the hot fluid domain and Ωcold the cold fluid domain.
The interface between them is denoted by Γ := ∂Ωcold ∩ ∂Ωhot = (−1, 1) × {0}. Here and
in the following, the subscript f stands for cold or hot. The boundaries of Ω f are respectively
composed by four disjoint regions: ∂Ω f =: Γ f , in∪Γ f , out∪Γ f , wall∪Γ, where Γ f , in is the input of
the fluid with a given velocity (Dirichlet boundary condition), Γ f , out contains outlet-pressure
condition (Neumann boundary condition), and the classical non-slip condition (homogeneous
Dirichlet boundary condition) is imposed on Γ f , wall ∪ Γ. The notations are summarized in
Fig. 1.

Ωcold

Ωhot

Γ

Γhot, in

Γcold,out

Γcold, wall

Γcold, in

Γhot, out

Γhot, wall

Figure 1: Illustration of the domain without thin layer

Let ϵ > 0. We define the open bounded domains

Dϵ := (−1, 1) ×
(
−1 −

ϵ

2
, 1 +

ϵ

2

)
, Ωϵs :=

{
x ∈ Dϵ ; d(x,Γ) <

ϵ

2

}
and

Ωϵcold :=
{
x ∈ Dϵ \Ωϵs; x2 < 0

}
, Γϵcold :=

{
x ∈ Dϵ ; d(x,Γ) =

ϵ

2
; x2 < 0

}
,

Ωϵhot :=
{
x ∈ Dϵ \Ωϵs; x2 > 0

}
, Γϵhot :=

{
x ∈ Dϵ ; d(x,Γ) =

ϵ

2
; x2 > 0

}
.

We denote Γϵ := Γϵcold ∪ Γ
ϵ
hot and we define Γϵf , in, Γϵf , out and Γϵf , wall by translating Γ f , in, Γ f , out

and Γ f , wall by ± ϵ2 . The boundaries of Ωϵf are then composed by Γϵf , in,Γ
ϵ
f , out,Γ

ϵ
f , wall and Γϵf .

The boundaries of Ωϵs are Γϵ and Γϵs,wall := ∂Ωϵs \ Γ
ϵ . Finally we define Ωϵ as the union

ofΩϵcold, Ωϵhot andΩϵs. Accordingly, ∂Ωϵ = Γϵin∪Γ
ϵ
out∪Γ

ϵ ∪Γϵ
wall, where Γϵin := Γϵcold, in∪Γ

ϵ
hot, in,

Γϵout := Γϵcold, out ∪ Γ
ϵ
hot, out and Γϵ

wall := Γϵcold, wall ∪ Γ
ϵ
hot, wall ∪ Γ

ϵ
s, wall (see Fig. 2).
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Γ

Figure 2: Illustration of the domain of the exact problem with a thin layer

The physical models. We model the fluid flow with the stationary Navier-Stokes equa-
tions: uϵf stands for the velocity of each fluid and pϵf for the pressure. The physical prop-
erties of the fluids, that is, the viscosity ν f and the density ρ f , are assumed to be constants.
Let u f , in ∈ H

1
2 (Γ f ,in)d and let us consider uϵf , in(x1, x2) := u f , in(x1, x2 ±

ϵ
2 ). Then we have the

following system

−ν f∆uϵf + ρ f (∇uϵf )u
ϵ
f + ∇pϵf = 0 in Ωϵf ,
div(uϵf ) = 0 in Ωϵf ,

uϵf = uϵf ,in on Γϵf ,in,
σ(uϵf , p

ϵ
f )n = 0 on Γϵf ,out,

uϵf = 0 on Γϵf , wall ∪ Γ
ϵ
f ,

(1)

where the fluid stress tensor is defined by

σ(u, p) := 2νε(u) − pI, with ε(u) :=
1
2

(
∇u + ∇uT

)
.

In the following, we introduce the notations

uϵ := uϵcold1Ω
ϵ
cold
+ uϵhot1Ω

ϵ
hot
, pϵ := pϵcold1Ω

ϵ
cold
+ pϵhot1Ω

ϵ
hot
,

νϵ := νcold1Ωϵcold
+ νhot1Ωϵhot

, ρϵ := ρcold1Ωϵcold
+ ρhot1Ωϵhot

.

Concerning the temperature, we model it as the solution T ϵ of the stationary convection-
diffusion equation inΩϵ , where T ϵhot, T ϵcold and T ϵs are the restriction of the temperature toΩϵhot,
Ωϵcold and Ωϵs respectively. The physical parameters are the thermal conductivity κ f and the
thermal capacity c f are assumed to be constant. We then define

T ϵ :=T ϵcold1Ωϵcold
+T ϵhot1Ωϵhot

+T ϵs1Ωϵs , kϵ :=kcold1Ωϵcold
+khot1Ωϵhot

+ks1Ωϵs , cϵ :=ccold1Ωϵcold
+chot1Ωϵhot

.

On the inlet Γϵin we impose a given temperature (colder on Γϵcold,in and hotter on Γϵhot,in), and
on Γϵ

wall and Γϵout we assume adiabatic conditions. On the interface Γϵ we suppose continuity
of the temperature and the flux, this is, the jumps are zero. Let Tin ∈ H

1
2 (Γin), then we
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define T ϵin(x1, x2) := Tin(x1, x2 ±
ϵ
2 ). The convection-diffusion equation is stated as

− div(kcold∇T ϵcold) + ρcoldccolduϵcold · ∇T ϵcold = 0 in Ωϵcold,
− div(khot∇T ϵhot) + ρhotchotuϵhot · ∇T ϵhot = 0 in Ωϵhot,

− div(ks∇T ϵs ) = 0 in Ωϵs,
T ϵ = T ϵin on Γϵin,
∂T ϵ

∂n
= 0 on Γϵout ∪ Γ

ϵ
wall,

[T ϵ] = 0 on Γϵ ,[
k
∂T ϵ

∂n

]
= 0 on Γϵ .

(2)

Remark 1. In this work, we assume that the thermal expansion/contraction effects due to
temperature are small enough. Thus the velocity does not depend on the temperature and
then the problem is weakly coupled. This represents a first step for forthcoming work.

Functional framework and optimization problem. We introduce the following functional
spaces for the Navier-Stokes and convection-diffusion equations respectively,

V(Ωϵf ) := {wϵ ∈ H1(Ωϵf )
d; wϵ = 0 on Γϵf , in ∪ Γ

ϵ
f , wall ∪ Γ

ϵ
f },

H1(Ωϵ) := {S ϵ ∈ H1(Ωϵ); S ϵ = 0 on Γϵin}.

Hence, the variational formulations are the following. For the Navier-Stokes equations (1),
Find (uϵf , p

ϵ
f ) ∈

(
uϵf ,in + V(Ωϵf )

)
× L2(Ωϵf ) such that ∀wϵ ∈ Vϵ(Ωϵf ), r

ϵ ∈ L2(Ωϵf ),∫
Ωϵf

(
2ν f ε(uϵf ) : ε(wϵ) + ρ f (∇uϵf )u

ϵ
f · w

ϵ − pϵf div(wϵ) − rϵ div(uϵf )
)

dx = 0. (3)

For the convection-diffusion equation (2),
Find T ϵ ∈ T ϵin +H

1(Ωϵ) such that ∀S ϵ ∈ H1(Ωϵ),∫
Ωϵs

ks∇T ϵ · ∇S ϵdx +
∫
Ωϵhot∪Ω

ϵ
cold

(kϵ∇T ϵ · ∇S ϵ + ρϵcϵS ϵuϵ · ∇T ϵ)dx = 0. (4)

Our original aim is to minimize a certain functional with respect to the shape of the
thin layer which is the variable. The others boundaries are assumed to be fixed. For our
applications, we want to maximize the heat exchanged and minimize the pressure drop. The
negative heat exchanged W (−W is the heat exchanged) can be defined as

W(Ωϵ , uϵ ,T ϵ) =
∫
Ωϵhot

ρϵcϵuϵ · ∇T ϵdx −
∫
Ωϵcold

ρϵcϵuϵ · ∇T ϵdx. (5)

For the drop pressure we consider the difference between the pressure on the output and input,

that is DP(Ωϵcold, p
ϵ) =

∫
Γϵcold,in

pϵds −
∫
Γϵcold,out

pϵds. This functional is directly linked with the

energy dissipation of the fluid given by

E(Ωϵ , uϵ) =
∫
Ωϵhot∪Ω

ϵ
cold

2νϵ |ε(uϵ)|2dx. (6)
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We consider this functional rather than DP for mathematical reason: firstly it is a volume
integral and secondly, since the pressure does not have boundary conditions, the adjoint state
associated to DP can be ill-posed. Therefore, the shape optimization problem that we aim to
solve is 

min W(Ωϵ , uϵ(Ωϵ),T ϵ(Ωϵ))
s.t. E(Ωϵ , uϵ(Ωϵ)) ≤ Emax

d(Ωϵf ,cold,Ω
ϵ
f ,hot) ≥ dmin,

(7)

where d(Ωϵf ,cold,Ω
ϵ
f ,hot) := inf

x∈Ωϵf ,cold , y∈Ωϵf ,hot

|x − y| and uϵ ,T ϵ are the solutions of (3) and (4).

§3. Derivation of the effective boundary conditions, convergence analysis
and approximate optimization problem

In order to deal with the convection-diffusion equation (2), we aim to make an asymptotic
expansion to obtain a new model without thin layer and with new transmission conditions.
In this way, we will get rid of the meshing of Ωϵs associated to the small parameter, but the
equations will change. More details about this technique can be found it in [11].

Derivation of the new transmission conditions. Since the Navier-Stokes equations (1) does
not depend on Ωϵs, we only have to replace Ωϵf ,Γ

ϵ
f ,Γ
ϵ
f ,in,Γ

ϵ
f , out, u

ϵ
f , in by Ω f , Γ f , Γ f , in, Γ f , out,

u f , in, respectively. We define (u f , p f ) the solution of the following problem:
−ν f∆u f + ρ f (∇u f )u f + ∇p f = 0 in Ω f ,

div(u f ) = 0 in Ω f ,
u f = u f , in on Γ f , in,

σ(u f , p f )n = 0 on Γ f , out,
u f = 0 on Γ f , wall ∪ Γ.

(8)

Note that u f , p f is the translated solution of uϵf , p
ϵ
f in Ωϵf to Ω f . Then, we define,

u := ucold1Ωcold + uhot1Ωhot , p := pcold1Ωcold + phot1Ωhot ,
ν := νcold1Ωcold + νhot1Ωhot , ρ := ρcold1Ωcold + ρhot1Ωhot ,
k := kcold1Ωcold + khot1Ωhot , c := ccold1Ωcold + chot1Ωhot .

Proposition 1. We consider T = Tcold1Ωcold + Thot1Ωhot the solution of the problem

− div(kcold∇Tcold) + ρcoldccolducold · ∇Tcold = 0 in Ωcold,
− div(khot∇Thot) + ρhotchotuhot · ∇Thot = 0 in Ωhot,

T = Tin on Γin,

k
∂T
∂n

= 0 on Γout ∪ Γwall,

[T ] = 0 on Γ,[
k
∂T
∂n

]
= 0 on Γ.

(9)

Then, it exists C > 0 independent of ϵ such that ∥S ϵ − T∥1,Ω ≤ Cϵ, where S ϵ := T ϵcold(·, · −
ϵ
2 )1Ωcold + T ϵhot(·, · +

ϵ
2 )1Ωhot and T ϵ is the solution of (2).
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Proof. We recall that we here consider a square geometry in the two dimensional case. We

postulate the Ansätze, T ϵf (x) =
∑
j≥0

ϵ jT j
f (x1, x2), and T ϵs (x) =

∑
j≥0

ϵ jT j
s

(
x1,

x2

ϵ

)
.

Defining Y :=
x2

ϵ
∈

(
−1
2
,

1
2

)
and inserting this expansion in div(ks∇T ϵs ) = 0 in Ωϵs, we get

∑
j≥0

ϵ j

 ∂
∂x1

ks
∂T j

s

∂x1
+ ϵ−2 ∂

∂Y
ks
∂T j

s

∂Y

 = 0, ∀Y ∈
(
−1
2
,

1
2

)
.

Then, by formal identification of the powers of ϵ, we obtain in particular the first two terms,

∂

∂Y

(
ks
∂T 0

s

∂Y

)
= 0,

∂

∂Y

(
ks
∂T 1

s

∂Y

)
= 0, ∀Y ∈

(
−1
2
,

1
2

)
.

Note that the problem solved by T 0
s ,T

1
s is one-dimensional, and x1 is a parameter to that

problem, so we can integrate with respect to Y , getting a first degree polynomial for T 0
s , T 1

s .
In order to determine the coefficients of this polynomial we use the transmission conditions.
The transmission conditions [T ] = 0 on Γϵ and

[
k ∂T
∂n

]
= 0 on Γϵ become

T j
s

(
x1,
±1
2

)
= T j

f (x1, x2),∀ j ≥ 0, ks
∂T 0

s

∂Y

(
x1,±

1
2

)
= 0, ks

∂T 1
s

∂Y

(
x1,±

1
2

)
= k f

∂T 0
f

∂n

(
x1,±

ϵ

2

)
,

where we choose the normal n pointing towards Ωϵhot. Using these equations leads to T 0
s ,T

1
s

be affine with respect to Y . Furthermore, [T 0]ϵ = 0 and
[
k
∂T 0

∂n

]
ϵ

(x1) = 0, with the notation

[S ]ϵ(x1) := S hot

(
x1,
ϵ

2

)
− S cold

(
x1,
−ϵ

2

)
, for the jump between temperature on Γϵhot and Γϵcold

respectively. To justify the convergence we proceed as in [11], observing that T = S 0 :=
T 0(·, · − ϵ2 )1Ωcold + T 0(·, · + ϵ2 )1Ωhot , due to S 0 satisfies Equation (9). □

Remark 2. Notice that, in order to extend the result in a more general framework than the
square, we could use curvilinear coordinates as in [4].

Formulation of the approximate optimal heat exchanger design problem. Since now, we
will work with the approximated model (9) instead of the exact model (2). The Navier-Stokes
equations (8) have following variational formulation

Find (u f , p f ) ∈
(
u f ,in + V(Ω f )

)
× L2(Ω f ) such that ∀w ∈ V(Ω f ), r ∈ L2(Ω f ),∫

Ω f

(
2ν f ε(u f ) : ε(w) + ρ f (∇u f )u f · w − p f div(w) − rdiv(u f )

)
dx = 0

(10)

and the variational formulation associated to (9) is
Find T ∈ Tin +H

1
0 (Ω) such that ∀S ∈ H1

0 (Ω),∫
Ω

(k∇T · ∇S + ρcS u · ∇T )dx = 0, (11)

whereH1
0 (Ω) := {S ∈ H1(Ω); S = 0 on Γin}.
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Remark 3. If the viscosity ν f is large enough, the problem (10) has a unique solution (see,
e.g., [7] for details), and the problem (11) is also well posed (see, e.g., [5]).

The initial shape optimization problem (7) is then replaced by the following one that we
will focus on: {

min W(Ω, u(Ω),T (Ω))
s.t. E(Ω, u(Ω)) ≤ Emax,

(12)

where u and T are the solutions of (10) and (11), respectively.

§4. Shape sensitivity analysis

The computation of the shape derivatives for the order zero model is a simplification of [5]
which was derived in a fully Lagrangian setting. In the next proposition, we give the Eulerian
derivative for the convection-diffusion equation. This proof is rather standard and has been
studied in detail in the literature. Thus we do not detail the proof here and refer for exemple
to [1] where the case of the diffusion equation (without the convective term) is detailed (see
also [9] for the Navier-Stokes equations). The case of more elaborated transmission condi-
tions, doing an asymptotic expansion of order two for example, is much more difficult, in
particular because of the Laplace-Beltrami operator.

Proposition 2. The shape derivative T ′ of T is the solution of the following problem

− div(k∇T ′) + ρc(u · ∇T ′ + u′ · ∇T ) = 0 in Ωcold ∪Ωhot,
T ′ = 0 on Γin,

k
∂T ′

∂n
= 0 on Γout,[

T ′
]
= −

[
k−1

]
k ∂T
∂n (θ · n) on Γ,[

k
∂T ′

∂n

]
= − [k] divτ((θ · n)∇τT ) on Γ.

For the Lagrangian setting we require the concept of transported functional.

Definition 1. In our context, the transported functional (in Ω instead of Ωθ) of a shape
objective functional J, is the functionalJ such that for all θ ∈W1,∞

0 (Ω,Rd) and all (ū, p̄, T̄ ) ∈
H1(Ω,Rd) × L2(Ω) × H1(Ω)

J(θ, û, p̂, T̂ ) = J(Γθ, û ◦ (I + θ)−1, p̂ ◦ (I + θ)−1, T̂ ◦ (I + θ)−1).

For the considered problem, E andW stand respectively for the transported functional of E(Ω, u)
given in (6) and W(Ω, u,T ) given in (5).

In order to obtain a suitable expression of the shape derivative, we introduce the following
adjoint states. Firstly we consider R ∈ H1

0 (Ω) solution of the following adjoint problem:∫
Ω

(k∇R · ∇S + ρcRu · ∇S )dx =
∂J

∂T
(S ), ∀S ∈ H1

0 (Ω). (13)

Notice that this problem (13) is classically well-posed. Secondly we consider (v f , q f ) ∈
V(Ω f ) × L2(Ω f ) solution of the following adjoint problem:
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∫
Ω f

(
2ν f ε(v f ) : ε(w f ) + ρ f ((∇u f )T v f − (∇v f )u f ) · w f − q f div(w f ) − r f div(v f )

)
dx

= −

∫
Ω f

ρ f c f R f∇T f · w f dx +
∂J

∂(u f , p f )
(w f , r f ), ∀w f ∈ V(Ω f ), ∀r f ∈ L2(Ω f ). (14)

If ν f is large enough, it is well-known that this problem (14) has a unique solution (v f , q f ).

Remark 4. To solve Problem (12), we consider the adjoint problem (13) withJ =W and the
adjoint problem (14) with bothJ =W andJ = E, that is five adjoint problems ((vEcold, q

E
cold),

(vEhot, q
E
hot) associated to E, and RW , (vWcold, q

W
cold) and (vWhot, q

W
hot) associated to W).

Using the previous notations, the shape derivative can be written in the volume or surface
version, as it is established in the following proposition. The proof is classical (see, e.g., [5])
and based on a change of variable to move from the perturbed domain Ωθ = (I + θ)Ω to Ω.
Proposition 3. Let J be an objective shape function depending on u and T . Let J be the
transported objective function. Then J is differentiable with respect to θ ∈ W1,∞(Ω,Rd) and
the volume shape derivative is given by

d
dθ

(J(Γθ, u(Γθ),T (Γθ))(θ) =
∂J

∂θ
(θ) −

∫
Ω

(σ(u, p) : ∇v + ρ(∇u)u · v) div(θ)dx

+

∫
Ω

σ(u, p) : (∇v∇θ) + σ(v, q) : (∇u∇θ) + ρ(∇u∇θ)u · vdx

−

∫
Ω

div(θ)(k∇T · ∇R + ρcRu · ∇T )dx +
∫
Ω

k((∇θ + ∇θt)∇T ) · ∇R + ρcRu · (∇θt∇T )dx.

Moreover, the surface shape derivative is given by

d
dθ

(J(Γθ, u(Γθ),T (Γθ))(θ) =
∂J

∂θ
(θ) +

∫
Γ

(
−[σ(v, q) :∇u] + [k∇T ·∇R] − 2

[
k
∂T
∂n
∂R
∂n

])
(θ·n)ds.

where ∂J
∂θ

denotes the normal component of ∂J
∂θ

.

In order to consider the optimization problem (12), we specify here the derivative of the
associated functional:
∂E

∂θ
(θ) =

∫
Ω

|ϵ(u)|2 − 2νϵ(u) : ∇u∇θdx,

∂E

∂θ
(θ) = −

∫
Γ

|ϵ(u)|2(θ · n)ds,

∂E

∂(u f , p f )
(w f , r f ) =

∫
Ω f

4ν f ϵ(u f ) : ϵ(w f )dx,

∂W

∂θ
(θ) =

∫
Ωhot

div(θ)ρc∇T ·u − ρcu·(∇θt∇T )dx −
∫
Ωcold

div(θ)ρc∇T ·u − ρcu·(∇θt∇T )dx,

∂W

∂θ
(θ) = 0,

∂W

∂T
(S ) =

∫
Ωhot

ρc∇S · udx −
∫
Ωcold

ρc∇S · udx,

∂W

∂(u, p)
(w, r) =

∫
Ωhot

ρc∇T · wdx −
∫
Ωcold

ρc∇T · wdx.
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Remark 5. These shape derivatives formulas are used in an optimization algorithm: at each
iteration, they are used to find a descent direction and then we update the mesh.

§5. Numerical Results

We consider Problem (12) and a similar example to the one in [5]: the square Ω = (0, 10) ×
(0, 5) ∪ (0, 10) × (5, 10), where ∂Ω\Γ are fixed with a counter-current exchange case, this
is, the fluids enter from opposite directions. The inlet boundary conditions are Thot = 100
and Tcold = 0, with a parabolic profile v0 such that ∥v0∥∞ = 1 at Γin,hot and Γin,cold, respectively.
Since this work is based on the order zero model, where we have obtained the classical
transmissions conditions for the interface, we consider different physical properties: ρhot = 1,
ρcold = 2, khot = 10, kcold = 20, νhot = 0.16, νcold = 0.08, chot = 100khot, ccold = 100kcold.

The initial and last design are depicted in Fig. 3 and the convergence plots in Fig. 4:
the dissipation tends to be saturated meanwhile the constraint is satisfied. The objective
functions improve between 12% and 14%. We can see that to minimize the exchanged heat
with ρhotchot < ρcoldccold, the interface moves such that |Ωcold | ≥ |Ωhot |, so in that way the
temperature in the cold output will be hotter and the hot temperature will be colder (with
respect to the initialization).

(a) Initial temperature field (b) Final temperature field

Figure 3: Plots of the temperature at the first and last iteration

(a) Objective function J (b) Improving percentage of J (c) Dissipation constraint

Figure 4: Convergence plots, where the dissipation constraint is the difference between the
dissipation and the maximum value allowed.
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